On Multiple Prime Divisors of Cyclotomic Polynomials

By Wayne L. McDaniel

Abstract. Let q be a prime < 150 and F_n be the cyclotomic polynomial of order n. All triples (p, n, q) with p an odd prime < 10⁶ when q < 100 and $p < 10^4$ when 100 < q < 150 are given for which $F_n(q)$ is divisible by p^t (t > 1).

1. Introduction. The cyclotomic polynomial F_n of order *n* is defined by

(1)
$$F_n(x) = \prod_k (x - e^{2\pi i k/n})$$

where the index k ranges over the integers relatively prime to n. A basic formula relating $x^n - 1$ to the cyclotomic polynomials [3, Chapter 8] is

(2)
$$x^n - 1 = \prod_{d|n} F_d(x).$$

Certain investigations, such as, for example, those concerned with odd perfect numbers and amicable numbers draw upon a knowledge of the prime divisors of $F_n(q)$, for q prime; frequently, a knowledge of whether $F_n(q)$ is free of relatively small factors of multiplicity greater than one is helpful. We present in this paper all triples (p, n, q) with p an odd prime less than L (L defined below), q a prime less than 150 and n any positive integer, for which a power of p greater than the first divides $F_n(q)$.

We have made extensive use of the tables of solutions of $a^{p-1} \equiv 1 \pmod{p^2}$ presented in papers by Brillhart, Tonascia and Weinberger [1], and Riesel [4]. Our search limits for p are those given in these papers; if q is a prime < 150, then p < L for L defined as follows:

q = 2	$L=3\cdot 10^9$
q = 3	$L = 2^{30}$
q = 5	$L = 2^{29}$
q = 7, 11, 13, 29, 49	$L = 2^{28}$
q = 17, 19	$L = 2^{27}$
q = 23	$L = 2^{26}$
q = 61, 73, 89, 97	$L = 2^{25}$
q = 31, 37, 41, 43, 53, 59, 67, 71, 79, 83	$L = 10^{6}$
100 < q < 150	$L = 10^{4}$

Received August 27, 1973.

AMS (MOS) subject classifications (1970). Primary 10A25; Secondary 10A40. Key words and phrases. Cyclotomic polynomial, sum of divisors.

WAYNE L. MCDANIEL

2. The Approach. That starting with the available solutions of the congruence $a^{p-1} \equiv 1 \pmod{p^2}$ leads to a most efficient means of finding the multiple odd prime factors of $F_n(a)$, for any positive integer *n*, is based on the following reasoning: It is well known (see [2, pp. 164, 166]) that $F_n(a)$ has as possible divisors the largest prime factor of *n* (but not its square if n > 2) and numbers of the form 1 + kn. If, now, p'(t > 1) is an odd prime power divisor of $F_n(a)$, divides $a^n - 1$, it is clear that p' divides $a^n - 1$, and, therefore, $a^{p-1} \equiv 1 \pmod{p'}$. It follows that the only possible odd prime power divisors p'(t > 1) of $F_n(a)$, for p < L and a < 150, are those primes *p* listed in the tables of [1] and [4].

We have restricted our investigation to $F_n(a)$ for a a prime largely because interest in the multiplicity of divisors of cyclotomic polynomials frequently occurs in connection with their appearance as factors of the sum-of-divisors function σ . Since σ is a multiplicative function and, for q prime,

(3)
$$\sigma(q^{n-1}) = (q^n - 1)/(q - 1) = \prod_{d|n} F_d(q), \quad d \neq 1,$$

it is sufficient to confine one's attention to $F_n(a)$ for a a prime.

Our calculation, carried out on the University of Missouri's IBM 360, was shortened through application of the following extension of Theorem 4 in [1]:

THEOREM. Let a, r and m be positive integers with $(m, \varphi(m)) = 1$. If a belongs to $e \pmod{m}$ and $a^{\varphi(m)} \equiv 1 \pmod{m'}$, then a belongs to $e \pmod{m'}$.

Proof. The proof is by mathematical induction on r. The theorem is trivially true when r = 1. If the theorem is assumed to be true for r = t, then $a^e = 1 + km^t$ for some positive integer k. Now, when r = t + 1,

$$1 \equiv a^{\varphi(m)} \equiv (a^{e})^{\varphi(m)/e} = (1 + km^{i})^{\varphi(m)/e}$$

= 1 + km^{i} \varphi(m)/e (mod m^{i+1}),

from which it follows that m|k. Hence, $a^e \equiv 1 \pmod{m^{t+1}}$. No smaller power of a is congruent to $1 \pmod{m^{t+1}}$, since a belongs to $e \pmod{m}$.

We immediately have this

COROLLARY. If, for some odd prime p and positive integers a and r, a belongs to the exponent $e \pmod{p}$ and $a^{p-1} \equiv 1 \pmod{p'}$, then $p' | F_e(a)$.

Proof. Since, by the Theorem, p' divides $a^e - 1$, $p|F_d(a)$ for some divisor d of e, by (2). But then, $p|a^d - 1$, so d = e. Since d = e is the only divisor of e for which $p|F_d(a)$, p' divides $F_e(a)$.

The obvious implication of the Corollary, with respect to the problem of finding p, n and q (p < L, q < 150) such that $p'|F_n(q)$, is that, for each pair p and q such that $q^{p-1} \equiv 1 \pmod{p'}$ (t = 2 or 3) in the tables of [1] and [4], one need only find the smallest factor n of p - 1 for which $p|q^n - 1$. It follows that p' divides $F_n(q)$.

Our procedure, then, was straightforward; the exponent to which q belongs (mod p) was found in the usual way. Only four values of $F_n(q)$ are divisible by p^3 for p < L, q < 150, and these are marked with an asterisk in the table. No $F_n(q)$ is divisible by the fourth power of an odd prime for p and q in our ranges.

We are indebted to the referee for pointing out that the entry a = 23, p = 1370377 in Table I of [1] should have been a = 23, p = 13703077. Subsequently, we checked all values of a and p listed in the tables of both [1] and [4], and the

MULTIPLE PRIME DIVISORS OF CYCLOTOMIC POLYNOMIALS

triples in our own table, and found all entries to be correct with the one exception noted above.

p	п	\overline{q}	p	n	q
1093	$2^2 \cdot 7 \cdot 13$	2	*3	2	53
3511	3 ³ •5•13	2	47	23	53
11	5	3	59	29	53
1006003	$2 \cdot 3^2 \cdot 55889$	3	97	$2^{4} \cdot 3$	53
20771	5•31•67	5	2777	$2^2 \cdot 347$	59
40487	2•31•653	5	7	3	67
53471161	$2 \cdot 3^2 \cdot 5 \cdot 148531$	5	47	2.23	67
5	2 ²	7	268573	2.3.22381	67
491531	5•13•19•199	7	3	2	71
71	2.5.7	11	47	23	71
863	2•431	13	331	3.5.11	71
1747591	3•5•13•4481	13	3	1	73
3	2	17	7	3	79
46021	2.5.13.59	17	263	2.131	79
48947	24473	17	3037	$2^2 \cdot 3 \cdot 11 \cdot 23$	79
3	1	19	4871	487	83
*7	2•3	19	13691	$5 \cdot 37^2$	83
13	$2^2 \cdot 3$	19	3	2	89
43	2•3•7	19	13	$2^2 \cdot 3$	89
137	$2^2 \cdot 17$	19	7	2	97
63061489	$2^4 \cdot 3^2 \cdot 7 \cdot 73 \cdot 857$	19	5	1	101
13	2•3	23	*3	2	107
2481757	$2^2 \cdot 206813$	23	5	2 ²	107
13703077	$2^2 \cdot 3^2 \cdot 380641$	23	97	2 ⁵ •3	107
7	2•3	31	*3	1	109
79	3•13	31	3	1	127
6451	$3 \cdot 5^2 \cdot 43$	31	19	$2 \cdot 3^2$	127
3	1	37	907	2.3.151	127
77867	2•38933	37	17	2 ⁴	131
29	2 ²	41	29	$2^2 \cdot 7$	137
1025273	$2^3 \cdot 128159$	41	59	29	137
5	2 ²	43	6733	$2^2 \cdot 3 \cdot 11 \cdot 17$	137
103	2•3•17	43	5	2	149

All primes p and q, 2 , <math>q < 150, and integers n for which $p^2 | F_n(q)$.

WAYNE L. MCDANIEI

We remark that one can readily infer that if q is a prime < 150 and n is any positive integer > 1, then $\sigma(q^{n-1})$ is square-free of prime divisors p < L, $p \nmid n$, except in those cases where p, n and q are listed in our table. This is a consequence of (3) and a theorem due to Sylvester [5] which states, essentially, that if $F_r(a)$ and $F_s(a)$ are distinct divisors of $(a^n - 1)/(a - 1)$, then, except for divisors of r and s, $F_r(a)$ and $F_s(a)$ are relatively prime.

Department of Mathematics University of Missouri-St. Louis St. Louis, Missouri 63121

1. J. BRILLHART, J. TONASCIA & P. WEINBERGER, "On the Fermat quotient," Proceedings of the 1969 Atlas Symposium on Computers in Number Theory (Oxford, 1969), pp. 213-222.

2. T. NAGELL, Introduction to Number Theory, Wiley, New York, 1951. MR 13, 207.

3. H. RADEMACHER, Lectures on Elementary Number Theory, Blaisdell, Waltham, Mass., 1964. MR **30** #1079.

4. H. RIESEL, "Note on the congruence $a^{p-1} \equiv 1 \pmod{p^2}$," *Math. Comp.*, v. 18, 1964, pp. 149-150. MR 28 # 1156.

5. J. J. SYLVESTER, "On the divisors of the sum of a geometrical series whose first term is unity and common ratio any positive or negative number," *Nature*, v. 37, 1888, pp. 417-418; *Collected Mathematical Papers*, v. 4, 1912, pp. 625-629.