On Multiple Prime Divisors of Cyclotomic Polynomials

By Wayne L. McDaniel

Abstract

Let q be a prime <150 and F_{n} be the cyclotomic polynomial of order n. Alli triples (p, n, q) with p an odd prime $<10^{6}$ when $q<100$ and $p<10^{4}$ when $100<q$ <150 are given for which $F_{n}(q)$ is divisible by $p^{t}(t>1)$.

1. Introduction. The cyclotomic polynomial F_{n} of order n is defined by

$$
\begin{equation*}
F_{n}(x)=\prod_{k}\left(x-e^{2 \pi i k / n}\right), \tag{1}
\end{equation*}
$$

where the index k ranges over the integers relatively prime to n. A basic formula relating $x^{n}-1$ to the cyclotomic polynomials [3, Chapter 8] is

$$
\begin{equation*}
x^{n}-1=\prod_{d \mid n} F_{d}(x) . \tag{2}
\end{equation*}
$$

Certain investigations, such as, for example, those concerned with odd perfect numbers and amicable numbers draw upon a knowledge of the prime divisors of $F_{n}(q)$, for q prime; frequently, a knowledge of whether $F_{n}(q)$ is free of relatively small factors of multiplicity greater than one is helpful. We present in this paper all triples (p, n, q) with p an odd prime less than L (L defined below), q a prime less than 150 and n any positive integer, for which a power of p greater than the first divides $F_{n}(q)$.

We have made extensive use of the tables of solutions of $a^{p-1} \equiv 1\left(\bmod p^{2}\right)$ presented in papers by Brillhart, Tonascia and Weinberger [1], and Riesel [4]. Our search limits for p are those given in these papers; if q is a prime <150, then $p<L$ for L defined as follows:

q	$=2$	L	$=3 \cdot 10^{9}$
q	$=3$	L	$=2^{30}$
q	$=5$	L	$=2^{29}$
q	$=7,11,13,29,49$	L	$=2^{28}$
q	$=17,19$	L	$=2^{27}$
q	$=23$	L	$=2^{26}$
q	$=61,73,89,97$	L	$=2^{25}$
q	$=31,37,41,43,53,59,67,71,79,83$	L	$=10^{6}$
100	$<q<150$	L	$=10^{4}$

[^0]Copyright © 1974, American Mathematical Society
2. The Approach. That starting with the available solutions of the congruence $a^{p-1} \equiv 1\left(\bmod p^{2}\right)$ leads to a most efficient means of finding the multiple odd prime factors of $F_{n}(a)$, for any positive integer n, is based on the following reasoning: It is well known (see [2, pp. 164, 166]) that $F_{n}(a)$ has as possible divisors the largest prime factor of n (but not its square if $n>2$) and numbers of the form $1+k n$. If, now, $p^{t}(t>1)$ is an odd prime power divisor of $F_{n}(a), n$ any positive integer, then $p-1=k n$ for some integer k; since, by (2), $F_{n}(a)$ divides $a^{n}-1$, it is clear that p^{t} divides $a^{n}-1$, and, therefore, $a^{p-1} \equiv 1\left(\bmod p^{t}\right)$. It follows that the only possible odd prime power divisors $p^{t}(t>1)$ of $F_{n}(a)$, for $p<L$ and $a<150$, are those primes p listed in the tables of [1] and [4].

We have restricted our investigation to $F_{n}(a)$ for a a prime largely because interest in the multiplicity of divisors of cyclotomic polynomials frequently occurs in connection with their appearance as factors of the sum-of-divisors function σ. Since σ is a multiplicative function and, for q prime,

$$
\begin{equation*}
\sigma\left(q^{n-1}\right)=\left(q^{n}-1\right) /(q-1)=\prod_{d \mid n} F_{d}(q), \quad d \neq 1, \tag{3}
\end{equation*}
$$

it is sufficient to confine one's attention to $F_{n}(a)$ for a a prime.
Our calculation, carried out on the University of Missouri's IBM 360, was shortened through application of the following extension of Theorem 4 in [1]:

Theorem. Let a, r and m be positive integers with $(m, \varphi(m))=1$. If a belongs to $e(\bmod m)$ and $a^{q(m)} \equiv 1\left(\bmod m^{r}\right)$, then a belongs to $e\left(\bmod m^{r}\right)$.

Proof. The proof is by mathematical induction on r. The theorem is trivially true when $r=1$. If the theorem is assumed to be true for $r=t$, then $a^{e}=1+k m^{t}$ for some positive integer k. Now, when $r=t+1$,

$$
\begin{aligned}
1 & \equiv a^{\alpha(m)} \equiv\left(a^{e}\right)^{\phi(m) / e}=\left(1+k m^{t}\right)^{\phi(m) / e} \\
& \equiv 1+k m^{t} \varphi(m) / e\left(\bmod m^{t+1}\right)
\end{aligned}
$$

from which it follows that $m \mid k$. Hence, $a^{e} \equiv 1\left(\bmod m^{t+1}\right)$. No smaller power of a is congruent to $1\left(\bmod m^{t+1}\right)$, since a belongs to $e(\bmod m)$.

We immediately have this
Corollary. If, for some odd prime p and positive integers a and r, a belongs to the exponent $e(\bmod p)$ and $a^{p-1} \equiv 1\left(\bmod p^{r}\right)$, then $p^{r} \mid F_{e}(a)$.

Proof. Since, by the Theorem, p^{r} divides $a^{e}-1, p \mid F_{d}(a)$ for some divisor d of e, by (2). But then, $p \mid a^{d}-1$, so $d=e$. Since $d=e$ is the only divisor of e for which $p \mid F_{d}(a), p^{r}$ divides $F_{e}(a)$.

The obvious implication of the Corollary, with respect to the problem of finding p, n and $q(p<L, q<150)$ such that $p^{t} \mid F_{n}(q)$, is that, for each pair p and q such that $q^{p-1} \equiv 1\left(\bmod p^{t}\right)(t=2$ or 3$)$ in the tables of [1] and [4], one need only find the smallest factor n of $p-1$ for which $p \mid q^{n}-1$. It follows that p^{t} divides $F_{n}(q)$.

Our procedure, then, was straightforward; the exponent to which q belongs $(\bmod p)$ was found in the usual way. Only four values of $F_{n}(q)$ are divisible by p^{3} for $p<L, q<150$, and these are marked with an asterisk in the table. No $F_{n}(q)$ is divisible by the fourth power of an odd prime for p and q in our ranges.

We are indebted to the referee for pointing out that the entry $a=23$, $p=1370377$ in Table I of [1] should have been $a=23, p=13703077$. Subsequently, we checked all values of a and p listed in the tables of both [1] and [4], and the
triples in our own table, and found all entries to be correct with the one exception noted above.

All primes p and $q, 2<p<L, q<150$,
and integers n for which $p^{2} \mid F_{n}(q)$.

p	n	q	p	n	q
1093	$2^{2} \cdot 7 \cdot 13$	2	*3	2	53
3511	$3^{3} \cdot 5 \cdot 13$	2	47	23	53
11	5	3	59	29	53
1006003	$2 \cdot 3^{2} \cdot 55889$	3	97	$2^{4} \cdot 3$	53
20771	5.31.67	5	2777	$2^{2} \cdot 347$	59
40487	$2 \cdot 31 \cdot 653$	5	7	3	67
53471161	$2 \cdot 3^{2} \cdot 5 \cdot 148531$	5	47	$2 \cdot 23$	67
5	2^{2}	7	268573	2•3•22381	67
491531	5.13.19.199	7	3	2	71
71	$2 \cdot 5 \cdot 7$	11	47	23	71
863	2.431	13	331	3.5.11	71
1747591	3.5.13.4481	13	3	1	73
3	2	17	7	3	79
46021	2.5.13.59	17	263	$2 \cdot 131$	79
48947	24473	17	3037	$2^{2} \cdot 3 \cdot 11 \cdot 23$	79
3	1	19	4871	487	83
*7	$2 \cdot 3$	19	13691	$5 \cdot 37^{2}$	83
13	$2^{2} \cdot 3$	19	3	2	89
43	2.3.7	19	13	$2^{2} \cdot 3$	89
137	$2^{2} \cdot 17$	19	7	2	97
63061489	$2^{4} \cdot 3^{2} \cdot 7 \cdot 73 \cdot 857$	19	5	1	101
13	$2 \cdot 3$	23	*3	2	107
2481757	$2^{2} \cdot 206813$	23	5	2^{2}	107
13703077	$2^{2} \cdot 3^{2} \cdot 380641$	23	97	$2^{5} \cdot 3$	107
7	$2 \cdot 3$	31	*3	1	109
79	$3 \cdot 13$	31	3	1	127
6451	$3 \cdot 5^{2} \cdot 43$	31	19	$2 \cdot 3^{2}$	127
3	1	37	907	2.3.151	127
77867	$2 \cdot 38933$	37	17	$2{ }^{4}$	131
29	2^{2}	41	29	$2^{2} \cdot 7$	137
1025273	$2^{3} \cdot 128159$	41	59	29	137
5	2^{2}	43	6733	$2^{2} \cdot 3 \cdot 11 \cdot 17$	137
103	2.3.17	43	5	2	149

We remark that one can readily infer that if q is a prime <150 and n is any positive integer >1, then $\sigma\left(q^{n-1}\right)$ is square-free of prime divisors $p<L, p \nmid n$, except in those cases where p, n and q are listed in our table. This is a consequence of (3) and a theorem due to Sylvester [5] which states, essentially, that if $F_{r}(a)$ and $F_{s}(a)$ are distinct divisors of $\left(a^{n}-1\right) /(a-1)$, then, except for divisors of r and s, $F_{r}(a)$ and $F_{s}(a)$ are relatively prime.

Department of Mathematics
University of Missouri-St. Louis
St. Louis, Missouri 63121

1. J. Brillhart, J. Tonascia \& P. Weinberger, "On the Fermat quotient," Proceedings of the 1969 Atlas Symposium on Computers in Number Theory (Oxford, 1969), pp. 213-222.
2. T. Nagell, Introduction to Number Theory, Wiley, New York, 1951. MR 13, 207.
3. H. Rademacher, Lectures on Elementary NumberTheory, Blaisdell, Waltham, Mass., 1964. MR 30 \#1079.
4. H. Riesel, "Note on the congruence $a^{p-1} \equiv 1\left(\bmod p^{2}\right)$," Math. Comp., v. 18, 1964, pp. 149-150. MR 28 \# 1156.
5. J. J. Sylvester, "On the divisors of the sum of a geometrical series whose first term is unity and common ratio any positive or negative number," Nature, v. 37, 1888, pp. 417-418; Collected Mathematical Papers, v. 4, 1912, pp. 625-629.

[^0]: Received August 27, 1973.
 AMS (MOS) subject classifications (1970). Primary 10A25; Secondary 10A40.
 Key words and phrases. Cyclotomic polynomial, sum of divisors.

